지중해
지중해는 A는 바다 에 연결된 대서양 ,에 의해 둘러싸인 지중해 분지 에 의해 북쪽 : 거의 완전히 땅으로 둘러싸인 서부 및 남부 유럽 과 아나톨리아 에 의해 남쪽에 북 아프리카 , 그리고에 의해 동쪽에 레반트 . 바다는 서구 문명 의 역사 에서 중심적인 역할을했습니다. 지중해는 때때로 대서양의 일부로 간주되지만 일반적으로 별도의 수역이라고합니다. 지질 학적 증거에 따르면 약 590 만년 전 지중해는 대서양에서 단절되어 약 530 만년 전 잔 크린 홍수 로 다시 채워지기 전에 메시 니아 염분 위기 동안 약 60 만년 동안 부분적으로 또는 완전히 건조 되었습니다.
지중해 | |
---|---|
![]() 지중해의지도 | |
위치 | 서유럽 , 남유럽 , 북아프리카 및 서아시아 |
좌표 | 35 ° N 18 ° E / 35 ° N 18 ° E좌표 : 35 ° N 18 ° E / 35 ° N 18 ° E |
유형 | 바다 |
1 차 유입 | 대서양 , 마르마라 해 , 나일강 , Ebro , Rhône , Chelif , Po |
유역 국가 | 약 60
|
표면적 | 2,500,000km 2 (970,000 평방 마일) |
평균 깊이 | 1,500m (4,900 피트) |
맥스. 깊이 | 5,267m (17,280 피트) |
물의 양 | 3,750,000 km 3 (900,000 cu mi) |
체류 시간 | 80 ~ 100 년 [1] |
섬 | 3300+ |
정착지 | Alexandria , Barcelona , Algiers , Izmir , Rome , Athens , Beirut , Tripoli , Tunis , Tangier , Tel Aviv-Yafo , Split , ( 전체 목록 ) |
지중해는 2,500,000에 대한 km의 영역을 커버 2 (970,000 평방 마일), [2] 세계의 0.7 % 대표하는 바다의 표면을하지만 통해 대서양의 연결 지브롤터 해협 에 대서양을 연결하는 해협 좁힐 년 - 지중해 바다와 분리형 스페인 에서 유럽 에서 모로코 의 아프리카 넓은 단지 14 킬로미터 (9 마일) -is. 해양학 에서는 다른 곳의 지중해 와 구별하기 위해 유라 프리카 지중해 , 유럽 지중해 또는 아프리카 지중해 라고도합니다 . [3] [4]
지중해의 평균 수심은 1,500m (4,900 피트)이며 가장 깊은 기록 지점은 이오니아 해 의 칼립소 심해 에서 5,267m (17,280 피트)입니다 . 위도 30 ° ~ 46 ° N 과 경도 6 ° W ~ 36 ° E 사이에 있습니다. 지브롤터 해협 에서 터키 남동쪽 해안의 이스 켄 데룬 만 까지의 서쪽-동 길이 는 약 4,000 킬로미터 (2,500 마일)입니다.
바다는 고대 상인 과 여행자 에게 중요한 경로였으며 지역 사람들 간의 무역과 문화 교류를 촉진했습니다. 지중해 지역 의 역사는 많은 현대 사회의 기원과 발전을 이해하는 데 중요합니다. 로마 제국은 수세기 동안 바다 해상 패권을 유지했다.
지중해를 시계 방향으로 둘러싼 국가는 스페인 , 프랑스 , 모나코 , 이탈리아 , 슬로베니아 , 크로아티아 , 보스니아 헤르체고비나 , 몬테네그로 , 알바니아 , 그리스 , 터키 , 시리아 , 레바논 , 이스라엘 , 이집트 , 리비아 , 튀니지 , 알제리 , 모로코입니다 . 몰타 와 키프로스 는 바다에있는 섬나라입니다. 또한, 가자 지구 와 영국의 해외 영토 의 지브롤터 와 아크로티리 데켈리아는 바다에 해안선을 가지고있다.
이름과 어원


고대 이집트인들은 지중해 Wadj-WR / Wadj-WER / Wadj - 우르을했다. 이 용어 (문자 그대로 "대 초록")는 경작 된 나일강 삼각주 북쪽에있는 파피루스 숲이 특징 인 반고체 반수생 지역에 고대 이집트인이 부여한 이름입니다. [5]
고대 그리스 라는 지중해 단순히 ἡ θάλασσα ( 그는 탈라 , "바다") 때때로 또는 ἡ μεγάλη θάλασσα ( 그는 megálē 탈라 ; "위대한 바다"), ἡ ἡμετέρα θάλασσα ( 그는 hēmetérā 탈라 , "우리의 바다"), 또는 ἡ θάλασσα ἡ καθ'ἡμᾶς ( hē thálassa hē kath'hēmâs ; "우리 주변의 바다").
로마인들은 그것을 불리는 마레 매그넘 ( "위대한 바다") 또는 마레 Internum 부터 시작 ( "내부 바다")와 로마 제국 , 마레 노스 트럼 ( "우리의 바다"). Mare Mediterrāneum 이라는 용어 는 나중에 나타납니다. Solinus 는 3 세기에 이것을 사용한 것으로 보이지만, 현존하는 가장 오래된 증인은 6 세기 에 세비야의 Isidore입니다 . [6] [7] 라틴어로 '땅의 한가운데, 내륙'을 의미 하며, medius ( "중간"), terra ( "land, earth"), -āneus ( "자연을 가짐")의 합성어 입니다. .
라틴어는 것입니다 번역 차용 그리스어의 μεσόγειος ( mesógeios ; "내륙")에서 μέσος ( 메소 "중간에") 및 γήινος ( gḗinos 에서 "지구"), γῆ ( GE , "땅, 땅" ). 원래 의미는 '땅으로 둘러싸인 바다'라기보다는 '지구 한가운데의 바다'였을 것이다. [8] [9]
고대이란 인 들은 그것을 "로마 해"라고 불렀고 , 고전 페르시아어 텍스트에서는 Daryāy-e Rōm (دریای روم) 라고 불렀 는데 , 이것은 페르시아 중기 형태 인 Zrēh ī Hrōm (𐭦𐭫𐭩𐭤 𐭩 𐭤𐭫𐭥𐭫𐭥𐭫))에서 유래했을 수 있습니다. [10]
카르타고 은 "시리아 바다"라고 불렀다. 고대 시리아 텍스트, 페니키아 서사시 및 히브리어 성경 에서는 주로 "대해", HaYam HaGadol , ( 민수기 ; 여호수아서 ; 에스겔 ) 또는 간단히 "바다"( 열왕기 상 ) 로 알려졌습니다 . 그러나 그것은 또한 그레이터 시리아의 서해안 이나 성지 (따라서 동쪽을 향한 사람 뒤) 에 위치하기 때문에 "힌더 바다"라고도 불리며 때때로 "서양 해"로 번역됩니다. 또 다른 이름은 " 블레셋 바다 "( 출애굽기 ) 였는데 , 이스라엘 사람들 근처 해안의 많은 부분에 거주하는 사람들로부터 유래되었습니다 . 현대 히브리어 에서는 HaYam HaTikhon '중 해' 라고 불립니다 . [11] 에서 클래식 페르시아 텍스트는 Daryāy - 전자 SAM (دریای شام) "서쪽 바다"또는 "시리아 바다"를 불렀다. [12]
에서 현대 아랍어 , 그것은으로 알려진 알 - 바르 [알 - Abyaḍ] 알 - Mutawassiṭ ( البحر [الأبيض] المتوسط ) '는 [화이트] 중동 바다'. 이슬람 및 오래된 아랍 문학에서는 Baḥr al-Rūm (ī) ( بحر الروم 또는 بحر الرومي }) '로마의 바다'또는 '로마의 바다'였습니다. 처음에는 그 이름이 동부 지중해만을 지칭했지만 나중에는 지중해 전체로 확장되었습니다. 다른 아랍어 이름은 Baḥr al-šām (ī) ( بحر الشام ) ( "시리아 바다")와 Baḥr al-Maghrib ( بحرالمغرب ) ( "서쪽 바다")입니다. [13] [7]
에서 터키어 , 그것은이다 Akdeniz '화이트 바다'; 오스만에서 ﺁق دكيز , 때로는 에게 해만 의미합니다 . [14] 이 이전 그리스어, 비잔틴 이슬람 소스에 알려진되지 않는 이름의 기원은 명확하지 않다. 흑해 와 대조 될 수 있습니다 . [13] [11] [15] 페르시아어에서 이름은 Baḥr-i Safīd 로 번역 되었으며 나중에 오스만 터키어 에서도 사용되었습니다 . 아마도 구어체 그리스어 구 Άσπρη Θάλασσα ( Άspri Thálassa , lit. "White Sea") 의 기원 일 것입니다 . [13]
Johann Knobloch는 고전 고대 에 레반트의 문화가 기본 포인트를 나타내는 데 색상을 사용 했다고 주장합니다 . 검은 색은 북쪽 ( 흑해 이름 설명 ), 노란색 또는 파란색은 동쪽, 빨간색은 남쪽 (예 : 홍해 )입니다. , 흰색에서 서쪽으로. 이것은 그리스 설명 할 Άspri 탈라을 의 불가리아어 Byalo 더 , 터키 Akdeniz , 아랍 명칭은 위에서 설명한 점등 "흰색 바다". [16]
역사
고대 문명


여러 고대 문명은 지중해 해안 주변에 위치했으며 바다와의 근접성에 큰 영향을 받았습니다. 그것은 여러 시대에 걸쳐 수많은 지역 사회를 위해 무역, 식민지화 및 전쟁뿐만 아니라 (어업 및 기타 해산물 수집에서) 음식을 제공했습니다. [17]
공유 된 기후, 지질학 및 바다에 대한 접근으로 인해 지중해를 중심으로 한 문화는 문화와 역사가 어느 정도 얽혀있는 경향이 있습니다.
고전 고대에서 가장 주목할만한 지중해 문명 중 두 가지는 그리스 도시 국가 와 페니키아 인으로 , 둘 다 지중해 해안선을 광범위하게 식민지화했습니다. 나중에 아우구스투스 가 로마 제국을 세웠을 때 로마인들은 지중해를 Mare Nostrum ( "Our Sea") 이라고 불렀습니다 . 그 후 400 년 동안 로마 제국은 지중해와 지브롤터에서 레반트에 이르는 거의 모든 해안 지역을 완전히 통제했습니다.
고대 이집트를 정복 한 페르시아의 다리우스 1 세는 지중해와 홍해 를 연결하는 운하를 건설했습니다 . 다리우스의 운하는 노를 길게 뻗은 채 두 개의 삼단 이 서로 지나갈 수있을만큼 넓었 고 횡단하는 데 4 일이 걸렸습니다. [18]
2019 년에 Akdeniz University (UA) Underwater Research Center의 고고학 전문가 팀은 터키 지중해에서 3,600 년 전의 난파선을 발견했습니다 . 선박에서 발견 된 1.5 톤의 구리 잉곳 은 그 나이를 추정하는 데 사용되었습니다. 안탈야의 주지사 무 니르 Karaloğlu이 "로이 가치있는 발견을 설명 Göbeklitepe 수중 세계의". 다시 1600 BC 데이트 난파선이는 "보다 오래된 것이 확인되었다 Uluburun 난파선 1400 BC 거슬러 올라가는". [19 ] [20] [21] [22]
중세와 제국
서로마 제국은 약 476 AD 붕괴. 일시적으로 동쪽은 로마 제국 의 동쪽 절반에서 4 세기에 형성된 비잔틴 제국 에서 로마 권력이 살아남 았기 때문에 다시 지배적 이었습니다 . 7 세기에 또 다른 권력이 생겨 났고, 그와 함께 이슬람 종교가 곧 동쪽을 가로 질러 휩쓸 었습니다. 최대 범위에서 아랍 제국 [ 어느? ] 지중해 지역의 75 %를 통제하고 [ 의심스러운 ] 동쪽과 남쪽 해안에 지속적인 발자국을 남겼습니다.
아랍의 침략은 동아시아 제국과의 무역 경로를 방해하면서 서부와 동부 유럽 사이의 무역 관계를 중단. 그러나 이것은 카스피해를 가로 질러 무역을 촉진하는 간접적 인 영향을 미쳤다 . 이집트 로부터의 곡물 수출은 동부 세계 로 다시 라우팅 되었습니다 . 실크와 향신료와 같은 동아시아 제국의 제품은 선원과 유대인 상인에 의해 이집트에서 베니스 와 콘스탄티노플 과 같은 항구로 운반되었습니다 . 바이킹 공습 서부 유럽에서 무역을 중단하고 중단을 가져 더. 그러나, Norsemen에이 받는 노르웨이 무역 개발 하얀 바다를 도에서 명품에 거래 반면, 스페인 과 지중해. 8 세기 중반 의 비잔틴 인들은 지중해 북동부 지역을 다시 장악했습니다. 9 세기의 베네치아 선박은 아랍인의 괴롭힘에 맞서기 위해 무장했으며 베네치아에서 아시아 상품 무역에 집중했습니다. [23]

파티마 왕조는 과의 무역 관계를 유지 이탈리아 도시 국가들 과 같은 아말피 와 제노아 에 따라, 십자군 전쟁 이전을 카이로 Geniza의 문서. 996 년의 문서에는 카이로에 살고있는 아말피 안 상인이 언급되어 있습니다. 또 다른 편지는 제노바가 알렉산드리아 와 거래를했다는 내용이다 . 칼리프 알 무 스탄 시르 는 아말피 상인들이 라틴 호스피스 대신 예루살렘 에 약 1060 년에 거주하도록 허용했습니다 . [24]
십자군 전쟁은 유럽과 간의 무역의 번영을 주도 outremer의 지역. [25] 제노아 Venica 및 피사 십자군 제어 영역에서 콜로니를 만들어 동양으로 거래를 제어했다. 이 식민지들은 또한 그들이 동부 세계와 무역 할 수있게했습니다. 십자군의 몰락과 교황에 의한 무슬림 국가와의 무역 관계 금지 시도가 일시적으로 동양과의 무역을 방해했지만 계속되었습니다. [26]
유럽은 그러나, 더 조직하고 중앙 집중화 상태는 이상에서 형성되기 시작, 부활하기 시작 중세 애프터 12 세기의 르네상스 .

아나톨리아에 기반을 둔 오스만 세력은 계속해서 성장했고, 1453 년 콘스탄티노플 정복으로 비잔틴 제국을 소멸했습니다 . 오스만은 16 세기에 바다의 대부분을 장악하고 프랑스 남부 (1543 ~ 1544), 알제리, 튀니지에 해군 기지를 유지했습니다 . 유명한 오스만 선장 인 바르 바로 사는 프레 베자 전투 (1538 년) 의 승리로이 지배의 상징입니다 . 제르의 전투 (1560)는 지중해에서 오스만 해군 지배의 정점을 표시했다. 유럽 강국의 해군력이 높아짐에 따라 그들은 레판토 전투 (1571)가 오스만 해군 의 힘을 확인 했을 때이 지역에서 오스만 확장에 직면했습니다 . 이것은 주로 갤리선 사이에서 벌어진 마지막 해전이었습니다 .
북서 아프리카 의 바바리 해적 들은 서부 지중해의 기독교 해운과 해안선을 잡아 먹었습니다. [27] 로버트 데이비스에 따르면, 16에서 19 세기에 해적 노예로 125 만 개 유럽인 1 만 달러를 붙 잡았다. [28]
해양 운송의 발전은 지중해 전체에 영향을 미치기 시작했습니다. 한때는 서유럽과 동양 간의 대부분의 무역이이 지역을 통과했지만 1490 년대 이후 인도양으로 향하는 항로가 개발 되면서 서유럽의 대서양 항구를 통해 아시아 향신료 와 기타 상품을 수입 할 수있게 되었습니다. [29] [30] [31]
바다는 여전히 전략적으로 중요했습니다. 영국의 지브롤터 숙달은 아프리카와 서남 아시아에서 그들의 영향력을 보장했습니다. 특히 아부 키르 (1799, 나일강 전투 )와 트라팔가 (1805)의 해전 이후 영국은 오랫동안 지중해에서 지배력을 강화했습니다. [32] 전쟁에는 제 1 차 세계 대전 중 지중해에서의 해전 과 제 2 차 세계 대전 중 지중해의 해전이 포함되었습니다 .
1868 년 잠금 장치가없는 수에즈 운하 가 개통되면서 유럽과 아시아 간의 무역 흐름이 근본적으로 바뀌 었습니다. 가장 빠른 경로는 이제 지중해를 통해 동 아프리카와 아시아로 향했습니다. 이로 인해 지중해 국가와 중부 및 동유럽과 직접 연결되는 트리 에스테 와 같은 항구에 대한 선호도 가 급격히 증가했습니다. 20 세기에 들어서 1, 2 차 세계 대전과 수에즈 위기 , 냉전 으로 무역로가 유럽 북부 항구로 전환되었고, 유럽 통합, 실크 활성화를 통해 남부 항구로 다시 바뀌 었습니다. 도로 및 자유 세계 무역. [33]
21 세기와 이주
2013 년 몰타 대통령은 배가 전복 된 후 익사 한 많은 이민자들로 인해 지중해를 "묘지"로 묘사했습니다. [34] 유럽 의회의 Martin Schulz 의장 은 2014 년에 유럽의 이주 정책이 "지중해를 묘지로 바꾸었다"고 말하면서이 정책의 직접적인 결과로이 지역에서 익사 한 난민의 수를 언급했습니다. [35] 아제르바이잔 관계자는 "사람들이 다이 묘지 ..."로 바다를 설명했다. [36]
다음 2013 람페 두사 이주 난파선 의 이탈리아 정부는 "허가에 의해 지중해의 순찰을위한 국가 시스템을 강화하기로 결정 동작 마레 노스 트럼 이민자를 구출하고 이민자의 인신 매매를 체포하기 위해", 군사 및 인도 주의적 임무를. 2015 년에 백만 명 이상의 이주자들이 지중해를 건너 유럽으로 들어 왔습니다. [37]
이탈리아는 특히 유럽 이주 위기의 영향을 받았습니다 . 2013 년 이래로 70 만 명이 넘는 이주민이 이탈리아에 상륙했으며, [38] 주로 사하라 사막 이남의 아프리카 인입니다. [39]
지리학


지중해는 다음을 연결합니다.
- 받는 대서양 바이 지브롤터 해협 (알려진 호머 은 "으로의 글 헤라클레스의 기둥 서쪽에")
- 받는 사람 마르마라 해 와 흑해 의 해협에 의해, 다르다 넬스 및 보스포러스 동쪽에 각각
163 킬로미터 (101 마일) 길이의 인공 수에즈 운하 남동부는에 지중해를 연결하는 홍해를 수위가 본질적으로 동일하기 때문에, 선박 잠금없이. [11] [40]
지중해의 가장 서쪽 지점은 Alborán Sea 에서 Gibraltar 해협으로 의 전환 지점에 있으며, 가장 동쪽 지점은 터키 남동부 의 Iskenderun 해안에 있습니다. 지중해의 최북단은 이탈리아 북부의 Monfalcone 근처 트리 에스테 만 연안에 있으며 최남단 은 리비아의 El Agheila 마을 근처 의 Sidra 만 연안에 있습니다.
지중해의 큰 섬은 다음과 같습니다.
- 키프로스 , 크레타 , 에비 아 , 로즈 , 레스 보스 , 키 오스 , 케 팔로 니아 , 코르푸 , Limnos의 , 사모 스 , 낙소스 , 그리고 앤드 로스 에서 동부 지중해
- 지중해 중부의 시칠리아 , 크레스 , 크 르크 , 브라 치 , 흐 바르 , 파그 , 코르 출라 , 몰타
- 사르데냐 , 코르시카 , 발레 아레스 제도 : 서 지중해의 이비자 , 마요르카 , 메 노르 카
알파인 아크 또한 지중해 지역에 큰 기상 영향을, 주변에서 서쪽으로 지중해를 접촉 니스 .
전형적인 지중해 기후 는 덥고 건조한 여름과 온난하고 비가 오는 겨울을 가지고 있습니다. 이 지역의 작물에는 올리브 , 포도 , 오렌지 , 감귤 , 캐롭 , 코르크 등이 있습니다.
한계 바다
지중해에는 12 개의 주변 바다가 있습니다 . [41] [42] [43]
번호 | 바다 | 면적 (Km 2 ) | 한계 국가 |
---|---|---|---|
1 | 리비아 해 | 350,000 | 리비아 , 그리스 , 몰타 , 이탈리아 |
2 | 레반 틴 해 | 320,000 | 터키 , 시리아 , 레바논 , 이스라엘 , 팔레스타인 , 이집트 , 그리스 , 키프로스 , 영국 |
삼 | 티레 니아 해 | 275,000 | 이탈리아 , 프랑스 |
4 | 에게 해 | 214,000 | 터키 , 그리스 |
5 | 이오니아 해 | 169,000 | 그리스 , 알바니아 , 이탈리아 |
6 | 발레 아레스 해 | 150,000 | 프랑스 , 스페인 |
7 | 아드리아 해 | 138,000 | 알바니아 , 보스니아 헤르체고비나 , 크로아티아 , 이탈리아 , 몬테네그로 , 슬로베니아 |
8 | 사르데냐 해 | 120,000 | 이탈리아 , 스페인 |
9 | 크레타 해 | 95,000 | 그리스 , 리비아 , 이집트 |
10 | 리구 리아 해 | 80,000 | 이탈리아 , 프랑스 |
11 | 알 보란 해 | 53,000 | 스페인 , 모로코 , 알제리 , 영국 |
12 | 마르마라 해 | 11,500 | 터키 |
- | 다른 | 500,000 | Gulfs, Straits, Channels 및 특정 바다 이름이없는 기타 부분으로 구성 |
합계 | 지중해 | 2,500,000 | 23 개국 |
- 바다 목록
- 분류 : 지중해의 경계 바다
- 분류 : 지중해 만
- 분류 : 지중해 해협
- 분류 : 지중해의 수로
참고 1 : 국제 수로기구 (International Hydrographic Organization) 는이 지역을 서부 분지의 일반적인 지중해로 정의합니다. Sea of Sardinia 라벨을 인식하지 못합니다 . [44]
주 2 : 트라키아 바다 와 Myrtoan 바다가 있는 바다 의 일부 해 .
참고 3 : 흑해 는 그 일부로 간주되지 않습니다.
범위

국제 수로기구는 다음과 같이 지중해의 한계를 정의한다 [44] 으로부터 스트레칭 지브롤터 해협 받는 입구 서쪽에서 다르다 넬스 와 수에즈 운하 동쪽에, 지중해 유럽의 해안에 의해 제한된다 , 아프리카 및 아시아는 두 개의 깊은 유역으로 나뉩니다.
- 서부 분지 :
- 서쪽 : 케이프 트라팔가 (스페인)와 케이프 스파 텔 (아프리카) 의 끝을 연결하는 선
- 북동쪽 : 이탈리아의 서해안. 에서 메시나 해협 , 선은 케이프 Peloro의 섬의 동쪽 극단적 인 케이프 PACI의 북쪽 극단적 인 (15 ° 42'E)에 가입 시칠리아 . 시칠리아 북쪽 해안
- 동쪽 : Cape Lilibeo를 연결하는 시칠리아 서쪽 지점 ( 37 ° 47′N 12 ° 22′E / 37.783 ° N 12.367 ° E / 37.783; 12.367), Adventure Bank를 통해 Cape Bon (튀니지)까지
- 동부 분지 :
- 서쪽 : 서쪽 분지의 북동쪽과 동쪽 경계
- 북동쪽 : Kum Kale (26 ° 11′E)과 Dardanelles의 서쪽 입구 인 Cape Helles를 잇는 선
- 남동쪽 : 수에즈 운하 입구
- 동쪽 : 레바논 , 시리아 , 이스라엘 해안
해안 국가

다음 국가는 지중해에 해안선이 있습니다.
- Northern shore (from west to east): Spain, France, Monaco, Italy, Slovenia, Croatia, Bosnia and Herzegovina, Montenegro, Albania, Greece, Turkey.
- Eastern shore (from north to south): Turkey, Syria, Lebanon, Israel, Palestine, Egypt.
- Southern shore (from west to east): Morocco, Algeria, Tunisia, Libya, Egypt.
- Island nations: Malta, Cyprus.
Several other territories also border the Mediterranean Sea (from west to east):
- the British overseas territory of Gibraltar
- the Spanish autonomous cities of Ceuta and Melilla and nearby islands
- the Sovereign Base Areas on Cyprus
- the Palestinian Gaza Strip




Exclusive economic zone
Exclusive economic zones in Mediterranean Sea:[42][47]
Number | Country | Area (Km2) |
---|---|---|
1 | ![]() | 541,915 |
2 | ![]() | 493,708 |
3 | ![]() | 355,604 |
4 | ![]() | 260,000 |
5 | ![]() | 169,125 |
6 | ![]() | 128,843 |
7 | ![]() | 102,047 |
8 | ![]() | 98,088 |
9 | ![]() | 88,389 |
10 | ![]() | 72,195 |
11 | ![]() | 59,032 |
12 | ![]() | 55,542 |
13 | ![]() | 25,139 |
14 | ![]() | 19,265 |
15 | ![]() | 18,302 |
16 | ![]() | 13,691 |
17 | ![]() | 10,189 |
18 | ![]() | 7,745 |
19 | ![]() | 2,591 |
20 | ![]() | 288 |
21 | ![]() | 220 |
22 | ![]() | 50 |
23 | ![]() | Very low |
Total | Mediterranean Sea | 2,500,000 |
Coastline length
The Coastline length is about 46,000 km.[48][49][50]
Coastal cities
Major cities (municipalities), with populations larger than 200,000 people, bordering the Mediterranean Sea include:
Country | Cities |
---|---|
Algeria | Algiers, Annaba, Oran |
Egypt | Alexandria, Damietta, Port Said |
France | Marseille, Toulon, Nice |
Greece | Athens, Thessaloniki, Patras, Heraklion |
Israel | Ashdod, Haifa, Netanya, Tel Aviv |
Italy | Bari, Catania, Genoa, Messina, Naples, Palermo, Rome, Taranto, Trieste, Venice |
Lebanon | Beirut, Tripoli |
Libya | Benghazi, Misrata, Tripoli, Zawiya, Zliten |
Malta | Valletta |
Morocco | Tétouan, Tangier |
Palestine | Gaza City |
Spain | Alicante, Almería, Badalona, Barcelona, Cartagena, Málaga, Palma de Mallorca, Valencia. |
Syria | Latakia, Tartus |
Tunisia | Sfax, Sousse, Tunis |
Turkey | Alanya, Antalya, Ayvalık, Bodrum, Çanakkale, Çeşme, Fethiye, Foça, İskenderun, Istanbul (Sea of Marmara), İzmir, İzmit (Sea of Marmara), Kemer, Kuşadası, Marmaris, Mersin. |
Subdivisions

The International Hydrographic Organization (IHO) divides the Mediterranean into a number of smaller waterbodies, each with their own designation (from west to east):[44]
- the Strait of Gibraltar
- the Alboran Sea, between Spain and Morocco
- the Balearic Sea, between mainland Spain and its Balearic Islands
- the Ligurian Sea between Corsica and Liguria (Italy)
- the Tyrrhenian Sea enclosed by Sardinia, Italian peninsula and Sicily
- the Ionian Sea between Italy, Albania and Greece
- the Adriatic Sea between Italy, Slovenia, Croatia, Bosnia and Herzegovina, Montenegro and Albania
- the Aegean Sea between Greece and Turkey
Other seas

Some other seas whose names have been in common use from the ancient times, or in the present:
- the Sea of Sardinia, between Sardinia and Balearic Islands, as a part of the Balearic Sea
- the Sea of Sicily between Sicily and Tunisia
- the Libyan Sea between Libya and Crete
- In the Aegean Sea,
- the Thracian Sea in its north
- the Myrtoan Sea between the Cyclades and the Peloponnese
- the Sea of Crete north of Crete
- the Icarian Sea between Kos and Chios
- the Cilician Sea between Turkey and Cyprus
- the Levantine Sea at the eastern end of the Mediterranean
Many of these smaller seas feature in local myth and folklore and derive their names from such associations.
Other features


In addition to the seas, a number of gulfs and straits are recognised:
- the Saint George Bay in Beirut, Lebanon
- the Ras Ibn Hani cape in Latakia, Syria
- the Ras al-Bassit cape in northern Syria.
- the Minet el-Beida ("White Harbour") bay near ancient Ugarit, Syria
- the Strait of Gibraltar, connects the Atlantic Ocean to the Mediterranean Sea and separates Spain from Morocco
- the Bay of Algeciras, at the southern end of the Iberian Peninsula
- the Gulf of Corinth, an enclosed sea between the Ionian Sea and the Corinth Canal
- the Pagasetic Gulf, the gulf of Volos, south of the Thermaic Gulf, formed by the Mount Pelion peninsula
- the Saronic Gulf, the gulf of Athens, between the Corinth Canal and the Mirtoan Sea
- the Thermaic Gulf, the gulf of Thessaloniki, located in the northern Greek region of Macedonia
- the Kvarner Gulf, Croatia
- the Gulf of Almeria, southeast of Spain
- the Gulf of Lion, south of France
- the Gulf of Valencia, east of Spain
- the Strait of Messina, between Sicily and Calabrian peninsula
- the Gulf of Genoa, northwestern Italy
- the Gulf of Venice, northeastern Italy
- the Gulf of Trieste, northeastern Italy
- the Gulf of Taranto, southern Italy
- the Gulf of Saint Euphemia, southern Italy, with the international airport nearby
- the Gulf of Salerno, southwestern Italy
- the Gulf of Gaeta, southwestern Italy
- the Gulf of Squillace, southern Italy
- the Strait of Otranto, between Italy and Albania
- the Gulf of Haifa, northern Israel
- the Gulf of Sidra, between Tripolitania (western Libya) and Cyrenaica (eastern Libya)
- the Strait of Sicily, between Sicily and Tunisia
- the Corsica Channel, between Corsica and Italy
- the Strait of Bonifacio, between Sardinia and Corsica
- the Gulf of İskenderun, between İskenderun and Adana (Turkey)
- the Gulf of Antalya, between west and east shores of Antalya (Turkey)
- the Bay of Kotor, in south-western Montenegro and south-eastern Croatia
- the Malta Channel, between Sicily and Malta
- the Gozo Channel, between Malta Island and Gozo
Ten largest islands by area

Country | Island | Area in km2 | Population |
---|---|---|---|
Italy | Sicily | 25,460 | 5,048,995 |
Italy | Sardinia | 23,821 | 1,672,804 |
Cyprus | Cyprus | 9,251 | 1,088,503 |
France | Corsica | 8,680 | 299,209 |
Greece | Crete | 8,336 | 623,666 |
Greece | Euboea | 3,655 | 218.000 |
Spain | Majorca | 3,640 | 869,067 |
Greece | Lesbos | 1,632 | 90,643 |
Greece | Rhodes | 1,400 | 117,007 |
Greece | Chios | 842 | 51,936 |
Climate
Much of the Mediterranean coast enjoys a hot-summer Mediterranean climate. However, most of its southeastern coast has a hot desert climate, and much of Spain's eastern (Mediterranean) coast has a cold semi-arid climate. Although they are rare, tropical cyclones occasionally form in the Mediterranean Sea, typically in September–November.
Sea temperature
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Year | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Málaga[51] | 16 | 15 | 15 | 16 | 17 | 20 | 22 | 23 | 22 | 20 | 18 | 16 | 18.3 |
Barcelona[52] | 13 | 12 | 13 | 14 | 17 | 20 | 23 | 25 | 23 | 20 | 17 | 15 | 17.8 |
Marseille[53] | 13 | 13 | 13 | 14 | 16 | 18 | 21 | 22 | 21 | 18 | 16 | 14 | 16.6 |
Naples[54] | 15 | 14 | 14 | 15 | 18 | 22 | 25 | 27 | 25 | 22 | 19 | 16 | 19.3 |
Malta[55] | 16 | 16 | 15 | 16 | 18 | 21 | 24 | 26 | 25 | 23 | 21 | 18 | 19.9 |
Venice[56] | 11 | 10 | 11 | 13 | 18 | 22 | 25 | 26 | 23 | 20 | 16 | 14 | 17.4 |
Athens[57] | 16 | 15 | 15 | 16 | 18 | 21 | 24 | 24 | 24 | 21 | 19 | 18 | 19.3 |
Heraklion[58] | 16 | 15 | 15 | 16 | 19 | 22 | 24 | 25 | 24 | 22 | 20 | 18 | 19.7 |
Antalya[59] | 17 | 17 | 16 | 17 | 21 | 24 | 27 | 29 | 27 | 25 | 22 | 19 | 21.8 |
Limassol[60] | 18 | 17 | 17 | 18 | 20 | 24 | 26 | 27 | 27 | 25 | 22 | 19 | 21.7 |
Mersin[61] | 18 | 17 | 17 | 18 | 21 | 25 | 28 | 29 | 28 | 25 | 22 | 19 | 22.3 |
Tel Aviv[62] | 18 | 17 | 17 | 18 | 21 | 24 | 27 | 28 | 28 | 26 | 23 | 20 | 22.3 |
Alexandria[63] | 18 | 17 | 17 | 18 | 20 | 23 | 25 | 26 | 26 | 25 | 22 | 20 | 21.4 |
해양학
Being nearly landlocked affects conditions in the Mediterranean Sea: for instance, tides are very limited as a result of the narrow connection with the Atlantic Ocean. The Mediterranean is characterised and immediately recognised by its deep blue colour.
Evaporation greatly exceeds precipitation and river runoff in the Mediterranean, a fact that is central to the water circulation within the basin.[64] Evaporation is especially high in its eastern half, causing the water level to decrease and salinity to increase eastward.[65] The average salinity in the basin is 38 PSU at 5 m depth.[66] The temperature of the water in the deepest part of the Mediterranean Sea is 13.2 °C (55.8 °F).[66]
The net water influx from the Atlantic Ocean is ca. 70,000 m³/s or 2.2×1012 m3/a (7.8×1013 cu ft/a).[67] Without this Atlantic water, the sea level of the Mediterranean Sea would fall at a rate of about 1 m per year.[68]
General circulation
Water circulation in the Mediterranean can be attributed to the surface waters entering from the Atlantic through the Strait of Gibraltar (and also low salinity water entering the Mediterranean from the Black Sea through the Bosphorus). The cool and relatively low-salinity Mediterranean water circulates eastwards along the North African coasts. A part of the surface water does not pass the Strait of Sicily, but deviates towards Corsica before exiting the Mediterranean. The surface waters entering the eastern Mediterranean basin circulate along the Libyan and Israeli coasts. Upon reaching the Levantine Sea, the surface waters having warmed and increased its salinity from its initial Atlantic state, is now denser and sinks to form the Levantine Intermediate Waters (LIW). Most of the water found anywhere between 50 and 600 m deep in the Mediterranean originates from the LIW.[69] LIW are formed along the coasts of Turkey and circulate westwards along the Greek and South Italian coasts. LIW are the only waters passing the Sicily Strait westwards. After the Strait of Sicily, the LIW waters circulate along the Italian, French and Spanish coasts before exiting the Mediterranean through the depths of the Strait of Gibraltar. Deep water in the Mediterranean originates from three main areas: the Adriatic Sea, from which most of the deep water in the eastern Mediterranean originates, the Aegean Sea, and the Gulf of Lion. Deep water formation in the Mediterranean is triggered by strong winter convection fueled by intense cold winds like the Bora. When new deep water is formed, the older waters mix with the overlaying intermediate waters and eventually exit the Mediterranean. The residence time of water in the Mediterranean is approximately 100 years, making the Mediterranean especially sensitive to climate change.[70]
Other events affecting water circulation
Being a semi-enclosed basin, the Mediterranean experiences transitory events that can affect the water circulation on short time scales. In the mid 1990s, the Aegean Sea became the main area for deep water formation in the eastern Mediterranean after particularly cold winter conditions. This transitory switch in the origin of deep waters in the eastern Mediterranean was termed Eastern Mediterranean Transient (EMT) and had major consequences on water circulation of the Mediterranean.[71][72][73]
Another example of a transient event affecting the Mediterranean circulation is the periodic inversion of the North Ionian Gyre, which is an anticyclonic ocean gyre observed in the northern part of the Ionian Sea, off the Greek coast. The transition from anticyclonic to cyclonic rotation of this gyre changes the origin of the waters fueling it; when the circulation is anticyclonic (most common), the waters of the gyre originate from the Adriatic Sea. When the circulation is cyclonic, the waters originate from the Levantine Sea. These waters have different physical and chemical characteristics, and the periodic inversion of the North Ionian Gyre (called Bimodal Oscillating System or BiOS) changes the Mediterranean circulation and biogeochemistry around the Adriatic and Levantine regions.[74]
Climate change
Because of the short residence time of waters, the Mediterranean Sea is considered a hot-spot for climate change effects.[75] Deep water temperatures have increased by 0.12 °C (0.22 °F) between 1959 and 1989.[76] According to climate projections, the Mediterranean Sea could become warmer. The decrease in precipitation over the region could lead to more evaporation ultimately increasing the Mediterranean Sea salinity.[75][77] Because of the changes in temperature and salinity, the Mediterranean Sea may become more stratified by the end of the 21st century, with notable consequences on water circulation and biogeochemistry.
생 지구 화학
In spite of its great biodiversity, concentrations of chlorophyll and nutrients in the Mediterranean Sea are very low, making it one of the most oligotrophic ocean regions in the world. The Mediterranean Sea is commonly referred to as an LNLC (Low-Nutrient, Low-Chlorophyll) area. The Mediterranean Sea fits the definition of a desert in which its nutrient contents are low, making it difficult for plants and animals to develop.
There are steep gradients in nutrient concentrations, chlorophyll concentrations and primary productivity in the Mediterranean. Nutrient concentrations in the western part of the basin are about double the concentrations in the eastern basin. The Alboran Sea, close to the Strait of Gibraltar, has a daily primary productivity of about 0.25 g C (grams of carbon) m−2 day−1 whereas the eastern basin has an average daily productivity of 0.16 g C m−2 day−1.[78] For this reason, the eastern part of the Mediterranean Sea is termed "ultraoligotrophic". The productive areas of the Mediterranean Sea are few and small. High (i.e. more than 0.5 grams of Chlorophyll a per cubic meter) productivity occurs in coastal areas, close to the river mouths which are the primary suppliers of dissolved nutrients. The Gulf of Lion has a relatively high productivity because it is an area of high vertical mixing, bringing nutrients to the surface waters that can be used by phytoplankton to produce Chlorophyll a.[79]
Primary productivity in the Mediterranean is also marked by an intense seasonal variability. In winter, the strong winds and precipitation over the basin generate vertical mixing, bringing nutrients from the deep waters to the surface, where phytoplankton can convert it into biomass.[80] However, in winter, light may be the limiting factor for primary productivity. Between March and April, spring offers the ideal trade-off between light intensity and nutrient concentrations in surface for a spring bloom to occur. In summer, high atmospheric temperatures lead to the warming of the surface waters. The resulting density difference virtually isolates the surface waters from the rest of the water column and nutrient exchanges are limited. As a consequence, primary productivity is very low between June and October.[81][79]
Oceanographic expeditions uncovered a characteristic feature of the Mediterranean Sea biogeochemistry: most of the chlorophyll production does not occur on the surface, but in sub-surface waters between 80 and 200 meters deep.[82] Another key characteristic of the Mediterranean is its high nitrogen-to-phosphorus ratio (N:P). Redfield demonstrated that most of the world's oceans have an average N:P ratio around 16. However, the Mediterranean Sea has an average N:P between 24 and 29, which translates a widespread phosphorus limitation.[clarification needed][83][84][85][86]
Because of its low productivity, plankton assemblages in the Mediterranean Sea are dominated by small organisms such as picophytoplankton and bacteria.[87][88]
지질학

The geologic history of the Mediterranean Sea is complex. Underlain by oceanic crust, the sea basin was once thought to be a tectonic remnant of the ancient Tethys Ocean; it is now known to be a structurally younger basin, called the Neotethys, which was first formed by the convergence of the African and Eurasian plates during the Late Triassic and Early Jurassic. Because it is a near-landlocked body of water in a normally dry climate, the Mediterranean is subject to intensive evaporation and the precipitation of evaporites. The Messinian salinity crisis started about six million years ago (mya) when the Mediterranean became landlocked, and then essentially dried up. There are salt deposits accumulated on the bottom of the basin of more than a million cubic kilometres—in some places more than three kilometres thick.[89][90]
Scientists estimate that the sea was last filled about 5.3 million years ago (mya) in less than two years by the Zanclean flood. Water poured in from the Atlantic Ocean through a newly breached gateway now called the Strait of Gibraltar at an estimated rate of about three orders of magnitude (one thousand times) larger than the current flow of the Amazon River.[91]
The Mediterranean Sea has an average depth of 1,500 m (4,900 ft) and the deepest recorded point is 5,267 m (17,280 ft) in the Calypso Deep in the Ionian Sea. The coastline extends for 46,000 km (29,000 mi). A shallow submarine ridge (the Strait of Sicily) between the island of Sicily and the coast of Tunisia divides the sea in two main subregions: the Western Mediterranean, with an area of about 850,000 km2 (330,000 mi2); and the Eastern Mediterranean, of about 1.65 million km2 (640,000 mi2). Coastal areas have submarine karst springs or vruljas, which discharge pressurised groundwater into the water from below the surface; the discharge water is usually fresh, and sometimes may be thermal.[92][93]
Tectonics and paleoenvironmental analysis
The Mediterranean basin and sea system was established by the ancient African-Arabian continent colliding with the Eurasian continent. As Africa-Arabia drifted northward, it closed over the ancient Tethys Ocean which had earlier separated the two supercontinents Laurasia and Gondwana. At about that time in the middle Jurassic period (roughly 170 million years ago[dubious ]) a much smaller sea basin, dubbed the Neotethys, was formed shortly before the Tethys Ocean closed at its western (Arabian) end. The broad line of collisions pushed up a very long system of mountains from the Pyrenees in Spain to the Zagros Mountains in Iran in an episode of mountain-building tectonics known as the Alpine orogeny. The Neotethys grew larger during the episodes of collisions (and associated foldings and subductions) that occurred during the Oligocene and Miocene epochs (34 to 5.33 mya); see animation: Africa-Arabia colliding with Eurasia. Accordingly, the Mediterranean basin consists of several stretched tectonic plates in subduction which are the foundation of the eastern part of the Mediterranean Sea. Various zones of subduction contain the highest oceanic ridges, east of the Ionian Sea and south of the Aegean. The Central Indian Ridge runs east of the Mediterranean Sea south-east across the in-between[clarification needed] of Africa and the Arabian Peninsula into the Indian Ocean.
Messinian salinity crisis


During Mesozoic and Cenozoic times, as the northwest corner of Africa converged on Iberia, it lifted the Betic-Rif mountain belts across southern Iberia and northwest Africa. There the development of the intramontane Betic and Rif basins created two roughly parallel marine gateways between the Atlantic Ocean and the Mediterranean Sea. Dubbed the Betic and Rifian corridors, they gradually closed during the middle and late Miocene: perhaps several times.[94] In the late Miocene the closure of the Betic Corridor triggered the so-called "Messinian salinity crisis" (MSC), when the Mediterranean almost entirely dried out. The start of the MSC was recently estimated astronomically at 5.96 mya, and it persisted for some 630,000 years until about 5.3 mya;[95] see Animation: Messinian salinity crisis, at right.
After the initial drawdown[clarification needed] and re-flooding, there followed more episodes—the total number is debated—of sea drawdowns and re-floodings for the duration of the MSC. It ended when the Atlantic Ocean last re-flooded the basin—creating the Strait of Gibraltar and causing the Zanclean flood—at the end of the Miocene (5.33 mya). Some research has suggested that a desiccation-flooding-desiccation cycle may have repeated several times, which could explain several events of large amounts of salt deposition.[96][97] Recent studies, however, show that repeated desiccation and re-flooding is unlikely from a geodynamic point of view.[98][99]
Desiccation and exchanges of flora and fauna
The present-day Atlantic gateway, the Strait of Gibraltar, originated in the early Pliocene via the Zanclean Flood. As mentioned, there were two earlier gateways: the Betic Corridor across southern Spain and the Rifian Corridor across northern Morocco. The Betic closed about 6 mya, causing the Messinian salinity crisis (MSC); the Rifian or possibly both gateways closed during the earlier Tortonian times, causing a "Tortonian salinity crisis" (from 11.6 to 7.2 mya), long before the MSC and lasting much longer. Both "crises" resulted in broad connections between the mainlands of Africa and Europe, which allowed migrations of flora and fauna—especially large mammals including primates—between the two continents. The Vallesian crisis indicates a typical extinction and replacement of mammal species in Europe during Tortonian times following climatic upheaval and overland migrations of new species:[100] see Animation: Messinian salinity crisis (and mammal migrations), at right.
The almost complete enclosure of the Mediterranean basin has enabled the oceanic gateways to dominate seawater circulation and the environmental evolution of the sea and basin. Circulation patterns are also affected by several other factors—including climate, bathymetry, and water chemistry and temperature—which are interactive and can induce precipitation of evaporites. Deposits of evaporites accumulated earlier in the nearby Carpathian foredeep during the Middle Miocene, and the adjacent Red Sea Basin (during the Late Miocene), and in the whole Mediterranean basin (during the MSC and the Messinian age). Many diatomites are found underneath the evaporite deposits, suggesting a connection between their[clarification needed] formations.
Today, evaporation of surface seawater (output) is more than the supply (input) of fresh water by precipitation and coastal drainage systems, causing the salinity of the Mediterranean to be much higher than that of the Atlantic—so much so that the saltier Mediterranean waters sink below the waters incoming from the Atlantic, causing a two-layer flow across the Strait of Gibraltar: that is, an outflow submarine current of warm saline Mediterranean water, counterbalanced by an inflow surface current of less saline cold oceanic water from the Atlantic. In the 1920s, Herman Sörgel proposed the building of a hydroelectric dam (the Atlantropa project) across the Straits, using the inflow current to provide a large amount of hydroelectric energy. The underlying energy grid was also intended to support a political union between Europe and, at least, the Maghreb part of Africa (compare Eurafrika for the later impact and Desertec for a later project with some parallels in the planned grid).[101]
Shift to a "Mediterranean climate"
The end of the Miocene also marked a change in the climate of the Mediterranean basin. Fossil evidence from that period reveals that the larger basin had a humid subtropical climate with rainfall in the summer supporting laurel forests. The shift to a "Mediterranean climate" occurred largely within the last three million years (the late Pliocene epoch) as summer rainfall decreased. The subtropical laurel forests retreated; and even as they persisted on the islands of Macaronesia off the Atlantic coast of Iberia and North Africa, the present Mediterranean vegetation evolved, dominated by coniferous trees and sclerophyllous trees and shrubs with small, hard, waxy leaves that prevent moisture loss in the dry summers. Much of these forests and shrublands have been altered beyond recognition by thousands of years of human habitation. There are now very few relatively intact natural areas in what was once a heavily wooded region.
고기 후
Because of its latitude and its landlocked position, the Mediterranean is especially sensitive to astronomically induced climatic variations, which are well documented in its sedimentary record. Since the Mediterranean is subject to the deposition of eolian dust from the Sahara during dry periods, whereas riverine detrital input prevails during wet ones, the Mediterranean marine sapropel-bearing sequences provide high-resolution climatic information. These data have been employed in reconstructing astronomically calibrated time scales for the last 9 Ma of the Earth's history, helping to constrain the time of past geomagnetic reversals.[102] Furthermore, the exceptional accuracy of these paleoclimatic records has improved our knowledge of the Earth's orbital variations in the past.
생물 다양성
Unlike the vast multidirectional ocean currents in open oceans within their respective oceanic zones; biodiversity in the Mediterranean Sea is that of a stable one due to the subtle but strong locked nature of currents which affects favorably, even the smallest macroscopic type of volcanic life form. The stable marine ecosystem of the Mediterranean Sea and sea temperature provides a nourishing environment for life in the deep sea to flourish while assuring a balanced aquatic ecosystem excluded from any external deep oceanic factors. It is estimated that there are more than 17,000 marine species in the Mediterranean Sea with generally higher marine biodiversity in coastal areas, continental shelves, and decreases with depth.[103]
As a result of the drying of the sea during the Messinian salinity crisis,[104] the marine biota of the Mediterranean are derived primarily from the Atlantic Ocean. The North Atlantic is considerably colder and more nutrient-rich than the Mediterranean, and the marine life of the Mediterranean has had to adapt to its differing conditions in the five million years since the basin was reflooded.
The Alboran Sea is a transition zone between the two seas, containing a mix of Mediterranean and Atlantic species. The Alboran Sea has the largest population of bottlenose dolphins in the Western Mediterranean, is home to the last population of harbour porpoises in the Mediterranean, and is the most important feeding grounds for loggerhead sea turtles in Europe. The Alboran Sea also hosts important commercial fisheries, including sardines and swordfish. The Mediterranean monk seals live in the Aegean Sea in Greece. In 2003, the World Wildlife Fund raised concerns about the widespread drift net fishing endangering populations of dolphins, turtles, and other marine animals such as the spiny squat lobster.
There was a resident population of killer whale in the Mediterranean until the 1980s, when they went extinct, probably due to longterm PCB exposure. There are still annual sightings of killer whale vagrants.[105]
환경 문제
For 4,000 years, human activity has transformed most parts of Mediterranean Europe, and the "humanisation of the landscape" overlapped with the appearance of the present Mediterranean climate.[106] The image of a simplistic, environmental determinist notion of a Mediterranean paradise on Earth in antiquity, which was destroyed by later civilisations, dates back to at least the 18th century and was for centuries fashionable in archaeological and historical circles. Based on a broad variety of methods, e.g. historical documents, analysis of trade relations, floodplain sediments, pollen, tree-ring and further archaeometric analyses and population studies, Alfred Thomas Grove's and Oliver Rackham's work on "The Nature of Mediterranean Europe" challenges this common wisdom of a Mediterranean Europe as a "Lost Eden", a formerly fertile and forested region, that had been progressively degraded and desertified by human mismanagement.[106] The belief stems more from the failure of the recent landscape to measure up to the imaginary past of the classics as idealised by artists, poets and scientists of the early modern Enlightenment.[106]

The historical evolution of climate, vegetation and landscape in southern Europe from prehistoric times to the present is much more complex and underwent various changes. For example, some of the deforestation had already taken place before the Roman age. While in the Roman age large enterprises such as the latifundia took effective care of forests and agriculture, the largest depopulation effects came with the end of the empire. Some[who?] assume that the major deforestation took place in modern times—the later usage patterns were also quite different e.g. in southern and northern Italy. Also, the climate has usually been unstable and there is evidence of various ancient and modern "Little Ice Ages",[107] and plant cover accommodated to various extremes and became resilient to various patterns of human activity.[106]
Human activity was therefore not the cause of climate change but followed it.[106] The wide ecological diversity typical of Mediterranean Europe is predominantly based on human behavior, as it is and has been closely related human usage patterns.[106] The diversity range[clarification needed] was enhanced by the widespread exchange and interaction of the longstanding and highly diverse local agriculture, intense transport and trade relations, and the interaction with settlements, pasture and other land use. The greatest human-induced changes, however, came after World War II, in line with the "1950s syndrome"[108] as rural populations throughout the region abandoned traditional subsistence economies. Grove and Rackham suggest that the locals left the traditional agricultural patterns and instead became scenery-setting agents[clarification needed] for tourism. This resulted in more uniform, large-scale formations[of what?].[106] Among further current important threats to Mediterranean landscapes are overdevelopment of coastal areas, abandonment of mountains and, as mentioned, the loss of variety via the reduction of traditional agricultural occupations.[106]
Natural hazards

The region has a variety of geological hazards which have closely interacted with human activity and land use patterns. Among others, in the eastern Mediterranean, the Thera eruption, dated to the 17th or 16th century BC, caused a large tsunami that some experts hypothesise devastated the Minoan civilisation on the nearby island of Crete, further leading some to believe that this may have been the catastrophe that inspired the Atlantis legend.[109] Mount Vesuvius is the only active volcano on the European mainland, while others, Mount Etna and Stromboli, are on neighbouring islands. The region around Vesuvius including the Phlegraean Fields Caldera west of Naples are quite active[110] and constitute the most densely populated volcanic region in the world where an eruptive event may occur within decades.[111]
Vesuvius itself is regarded as quite dangerous due to a tendency towards explosive (Plinian) eruptions.[112] It is best known for its eruption in AD 79 that led to the burying and destruction of the Roman cities of Pompeii and Herculaneum.
The large experience[clarification needed] of member states and regional authorities has led to exchange[of what?] on the international level with cooperation of NGOs, states, regional and municipality authorities and private persons.[113] The Greek–Turkish earthquake diplomacy is a quite positive example of natural hazards leading to improved relations between traditional rivals in the region after earthquakes in İzmir and Athens in 1999. The European Union Solidarity Fund (EUSF) was set up to respond to major natural disasters and express European solidarity to disaster-stricken regions within all of Europe.[114] The largest amount of funding requests in the EU relates to forest fires, followed by floods and earthquakes. Forest fires, whether man made or natural, are a frequent and dangerous hazard in the Mediterranean region.[113] Tsunamis are also an often underestimated hazard in the region. For example, the 1908 Messina earthquake and tsunami took more than 123,000 lives in Sicily and Calabria and was among the most deadly natural disasters in modern Europe.
Invasive species

The opening of the Suez Canal in 1869 created the first salt-water passage between the Mediterranean and the Red Sea. The Red Sea is higher than the Eastern Mediterranean, so the canal functions as a tidal strait that pours Red Sea water into the Mediterranean. The Bitter Lakes, which are hyper-saline natural lakes that form part of the canal, blocked the migration of Red Sea species into the Mediterranean for many decades, but as the salinity of the lakes gradually equalised with that of the Red Sea, the barrier to migration was removed, and plants and animals from the Red Sea have begun to colonise the Eastern Mediterranean. The Red Sea is generally saltier and more nutrient-poor than the Atlantic, so the Red Sea species have advantages over Atlantic species in the salty and nutrient-poor Eastern Mediterranean. Accordingly, Red Sea species invade the Mediterranean biota, and not vice versa; this phenomenon is known as the Lessepsian migration (after Ferdinand de Lesseps, the French engineer) or Erythrean ("red") invasion. The construction of the Aswan High Dam across the Nile River in the 1960s reduced the inflow of freshwater and nutrient-rich silt from the Nile into the Eastern Mediterranean, making conditions there even more like the Red Sea and worsening the impact of the invasive species.
Invasive species have become a major component of the Mediterranean ecosystem and have serious impacts on the Mediterranean ecology, endangering many local and endemic Mediterranean species. A first look at some groups of exotic species shows that more than 70% of the non-indigenous decapods and about 63% of the exotic fishes occurring in the Mediterranean are of Indo-Pacific origin,[115] introduced into the Mediterranean through the Suez Canal. This makes the Canal the first pathway of arrival of alien species into the Mediterranean. The impacts of some Lessepsian species have proven to be considerable, mainly in the Levantine basin of the Mediterranean, where they are replacing native species and becoming a familiar sight.
According to the International Union for Conservation of Nature definition, as well as Convention on Biological Diversity (CBD) and Ramsar Convention terminologies, they are alien species, as they are non-native (non-indigenous) to the Mediterranean Sea, and they are outside their normal area of distribution which is the Indo-Pacific region. When these species succeed in establishing populations in the Mediterranean Sea, compete with and begin to replace native species they are "Alien Invasive Species", as they are an agent of change and a threat to the native biodiversity. In the context of CBD, "introduction" refers to the movement by human agency, indirect or direct, of an alien species outside of its natural range (past or present). The Suez Canal, being an artificial (man made) canal, is a human agency. Lessepsian migrants are therefore "introduced" species (indirect, and unintentional). Whatever wording is chosen, they represent a threat to the native Mediterranean biodiversity, because they are non-indigenous to this sea. In recent years, the Egyptian government's announcement of its intentions to deepen and widen the canal have raised concerns from marine biologists, fearing that such an act will only worsen the invasion of Red Sea species into the Mediterranean, and lead to even more species passing through the canal.[116]
Arrival of new tropical Atlantic species
In recent decades, the arrival of exotic species from the tropical Atlantic has become noticeable. Whether this reflects an expansion of the natural area of these species that now enter the Mediterranean through the Gibraltar strait, because of a warming trend of the water caused by global warming; or an extension of the maritime traffic; or is simply the result of a more intense scientific investigation, is still an open question. While not as intense as the "Lessepsian" movement, the process may be of scientific interest and may therefore[non sequitur] warrant increased levels of monitoring.[citation needed]
Sea-level rise
By 2100 the overall level of the Mediterranean could rise between 3 to 61 cm (1.2 to 24.0 in) as a result of the effects of climate change.[117] This could have adverse effects on populations across the Mediterranean:
- Rising sea levels will submerge parts of Malta. Rising sea levels will also mean rising salt water levels in Malta's groundwater supply and reduce the availability of drinking water.[118]
- A 30 cm (12 in) rise in sea level would flood 200 square kilometres (77 sq mi) of the Nile Delta, displacing over 500,000 Egyptians.[119]
- Cyprus wetlands are also in danger of being destroyed by the rising temperatures and sea levels.[120]
Coastal ecosystems also appear to be threatened by sea level rise, especially enclosed seas such as the Baltic, the Mediterranean and the Black Sea. These seas have only small and primarily east–west movement corridors, which may restrict northward displacement of organisms in these areas.[121] Sea level rise for the next century (2100) could be between 30 cm (12 in) and 100 cm (39 in) and temperature shifts of a mere 0.05–0.1 °C in the deep sea are sufficient to induce significant changes in species richness and functional diversity.[122]
Pollution
Pollution in this region has been extremely high in recent years.[when?] The United Nations Environment Programme has estimated that 650,000,000 t (720,000,000 short tons) of sewage, 129,000 t (142,000 short tons) of mineral oil, 60,000 t (66,000 short tons) of mercury, 3,800 t (4,200 short tons) of lead and 36,000 t (40,000 short tons) of phosphates are dumped into the Mediterranean each year.[123] The Barcelona Convention aims to 'reduce pollution in the Mediterranean Sea and protect and improve the marine environment in the area, thereby contributing to its sustainable development.'[124] Many marine species have been almost wiped out because of the sea's pollution. One of them is the Mediterranean monk seal which is considered to be among the world's most endangered marine mammals.[125]
The Mediterranean is also plagued by marine debris. A 1994 study of the seabed using trawl nets around the coasts of Spain, France and Italy reported a particularly high mean concentration of debris; an average of 1,935 items per km2. Plastic debris accounted for 76%, of which 94% was plastic bags.[126]
Shipping

Some of the world's busiest shipping routes are in the Mediterranean Sea. In particular, the Maritime Silk Road from Asia and Africa leads through the Suez Canal directly into the Mediterranean Sea to its deep-water ports in Piraeus, Trieste, Genoa, Marseilles and Barcelona. It is estimated that approximately 220,000 merchant vessels of more than 100 tonnes cross the Mediterranean Sea each year—about one third of the world's total merchant shipping. These ships often carry hazardous cargo, which if lost would result in severe damage to the marine environment.
The discharge of chemical tank washings and oily wastes also represent a significant source of marine pollution. The Mediterranean Sea constitutes 0.7% of the global water surface and yet receives 17% of global marine oil pollution. It is estimated that every year between 100,000 t (98,000 long tons) and 150,000 t (150,000 long tons) of crude oil are deliberately released into the sea from shipping activities.

Approximately 370,000,000 t (360,000,000 long tons) of oil are transported annually in the Mediterranean Sea (more than 20% of the world total), with around 250–300 oil tankers crossing the sea every day. An important destination is the Port of Trieste, the starting point of the Transalpine Pipeline, which covers 40% of Germany's oil demand (100% of the federal states of Bavaria and Baden-Württemberg), 90% of Austria and 50% of the Czech Republic.[127] Accidental oil spills happen frequently with an average of 10 spills per year. A major oil spill could occur at any time in any part of the Mediterranean.[122]




















Tourism

The coast of the Mediterranean has been used for tourism since ancient times, as the Roman villa buildings on the Amalfi Coast or in Barcola show. From the end of the 19th century, in particular, the beaches became places of longing for many Europeans and travelers. From then on, and especially after World War II, mass tourism to the Mediterranean began with all its advantages and disadvantages. While initially the journey was by train and later by bus or car, today the plane is increasingly used.[130]
Tourism is today one of the most important sources of income for many Mediterranean countries, despite the man-made geopolitical conflicts[clarification needed] in the region. The countries have tried to extinguish rising man-made chaotic zones[clarification needed] that might affect the region's economies and societies in neighboring coastal countries, and shipping routes. Naval and rescue components in the Mediterranean Sea are considered to be among the best[citation needed] due to the rapid cooperation between various naval fleets. Unlike the vast open oceans, the sea's closed position facilitates effective naval and rescue missions[citation needed], considered the safest[citation needed] and regardless of[clarification needed] any man-made or natural disaster.
Tourism is a source of income for small coastal communities, including islands, independent of urban centers. However, tourism has also played major role in the degradation of the coastal and marine environment. Rapid development has been encouraged by Mediterranean governments to support the large numbers of tourists visiting the region; but this has caused serious disturbance to marine habitats by erosion and pollution in many places along the Mediterranean coasts.
Tourism often concentrates in areas of high natural wealth[clarification needed], causing a serious threat to the habitats of endangered species such as sea turtles and monk seals. Reductions in natural wealth may reduce the incentive for tourists to visit.[122]
Overfishing
Fish stock levels in the Mediterranean Sea are alarmingly low. The European Environment Agency says that more than 65% of all fish stocks in the region are outside safe biological limits and the United Nations Food and Agriculture Organisation, that some of the most important fisheries—such as albacore and bluefin tuna, hake, marlin, swordfish, red mullet and sea bream—are threatened.[date missing]
There are clear indications that catch size and quality have declined, often dramatically, and in many areas larger and longer-lived species have disappeared entirely from commercial catches.
Large open water fish like tuna have been a shared fisheries resource for thousands of years but the stocks are now dangerously low. In 1999, Greenpeace published a report revealing that the amount of bluefin tuna in the Mediterranean had decreased by over 80% in the previous 20 years and government scientists warn that without immediate action the stock will collapse.
갤러리
Beach of Hammamet, Tunisia
The beach of la Courtade in the Îles d'Hyères, France
Sardinia's south coast, Italy
Pretty Bay, Malta
Panoramic view of Piran, Slovenia
Panoramic view of Cavtat, Croatia
View of Neum, Bosnia and Herzegovina
A view of Sveti Stefan, Montenegro
Ksamil Islands, Albania
Navagio, Greece
Marmaris, Turquoise Coast, Turkey
Paphos, Cyprus
Burj Islam Beach, Latakia, Syria
A view of Raouché off the coast of Beirut, Lebanon
A view of Haifa, Israel
Coast of Alexandria, view From Bibliotheca Alexandrina, Egypt
Old city of Ibiza Town, Spain
Les Aiguades near Béjaïa, Algeria
El Jebha, a port town in Morocco
Europa Point, Gibraltar
Panoramic view of La Condamine, Monaco
Sunset at the Deir al-Balah beach, Gaza Strip
또한보십시오
- Aegean dispute
- Atlantropa
- Babelmed, the site of the Mediterranean cultures
- Cyprus dispute – ongoing dispute between Greek Cypriots and Turkish Cypriots
- Cyprus–Turkey maritime zones dispute – ongoing political dispute in the Mediterranean
- Eastern Mediterranean – Countries that are geographically located to the east of the Mediterranean Sea
- Euro-Mediterranean Parliamentary Assembly
- Exclusive economic zone of Greece
- Familial Mediterranean fever
- History of the Mediterranean region – Historical development of the Mediterranean
- Holy League (1571)
- Libya–Turkey maritime deal
- List of islands in the Mediterranean – Wikipedia list article
- List of Mediterranean countries
- Mediterranean diet – Diet inspired by 1960s eating habits of Greece, Italy, and Spain
- Mediterranean forests, woodlands, and scrub – Habitat defined by the World Wide Fund for Nature
- Mediterranean Games
- Mediterranean race – Outdated grouping of human beings
- Mediterranean sea (oceanography) – Mostly enclosed sea with limited exchange with outer oceans
- Piri Reis – Turkish admiral and cartographer – Early cartographer of the Mediterranean
- Qattara Depression Project
- Seto Inland Sea – Japanese inland sea – also known as the Japanese Mediterranean Sea
- Tyrrhenian Basin
- Union for the Mediterranean – Intergovernmental organization
참고 문헌
- ^ Pinet, Paul R. (2008). Invitation to Oceanography. Paleoceanography. 30. Jones & Barlett Learning. p. 220. ISBN 978-0-7637-5993-3.
- ^ "Mediterranean Sea". Encyclopædia Britannica. Retrieved 23 October 2015.
- ^ "Microsoft Word – ext_abstr_East_sea_workshop_TLM.doc" (PDF). Retrieved 23 April 2010.
- ^ "Researchers predict Mediterranean Sea level rise – Headlines – Research – European Commission". Europa. 19 March 2009. Retrieved 23 April 2010.
- ^ Golvin, Jean-Claude (1991). L'Égypte restituée, Tome 3. Paris: Éditions Errance. p. 273. ISBN 2-87772-148-5.
- ^ Geoffrey Rickman, "The creation of Mare Nostrum: 300 BC – 500 AD", in David Abulafia, ed., The Mediterranean in History, ISBN 1-60606-057-0, 2011, p. 133.
- ^ a b Vaso Seirinidou, "The Mediterranean" in Diana Mishkova, Balázs Trencsényi, European Regions and Boundaries: A Conceptual History, series European Conceptual History 3, ISBN 1-78533-585-5, 2017, p. 80
- ^ "entry μεσόγαιος". Liddell & Scott. Archived from the original on 2 December 2009.
- ^ Oxford English Dictionary, 3rd ed, 2001, s.v.
- ^ Dehkhoda, Ali Akbar. ""دریای روم" entry". Parsi Wiki.
- ^ a b c Vella, Andrew P. (1985). "Mediterranean Malta" (PDF). Hyphen. 4 (5): 469–472. Archived from the original (PDF) on 29 March 2017.
- ^ Dehkhoda, Ali Akabar. ""دریای شام" entry". Parsi Wiki.
- ^ a b c "Baḥr al-Rūm" in Encyclopedia of Islam, 2nd ed
- ^ Diran Kélékian, Dictionnaire Turc-Français, Constantinople, 1911
- ^ Özhan Öztürk claims that in Old Turkish ak also means "west" and that Akdeniz hence means "West Sea" and that Karadeniz (Black Sea) means "North Sea". Özhan Öztürk. Pontus: Antik Çağ'dan Günümüze Karadeniz'in Etnik ve Siyasi Tarihi Genesis Yayınları. Ankara. 2011. pp. 5–9. Archived from the original on 15 September 2012.
- ^ Johann Knoblock. Sprache und Religion, Vol. 1 (Carl Winter Universitätsverlag, 1979), 18; cf. Schmitt, Rüdiger (1989). "Black Sea". Black – Encyclopaedia Iranica. Encyclopaedia Iranica, Vol. IV, Fasc. 3. pp. 310–313.
- ^ David Abulafia (2011). The Great Sea: A Human History of the Mediterranean. Oxford University Press.
- ^ Rappoport, S. (Doctor of Philosophy, Basel). History of Egypt (undated, early 20th century), Volume 12, Part B, Chapter V: "The Waterways of Egypt", pp. 248–257 (online). London: The Grolier Society.
- ^ Davidson, Tom (11 April 2019). "Archaeologists discover 3,600-year-old shipwreck that sunk in a storm". mirror. Retrieved 5 May 2019.
- ^ "Turkish archaeologists discover world's 'oldest' Bronze Age shipwreck off Antalya coast". DailySabah. 8 April 2019. Retrieved 5 May 2019.
- ^ "Turkey: 3,600-year-old shipwreck found in Mediterranean". www.aa.com.tr. Retrieved 5 May 2019.
- ^ Whelan, Ed. "Bronze Age Ship Found in the Mediterranean is World's Oldest Shipwreck!". www.ancient-origins.net. Retrieved 5 May 2019.
- ^ Couper, Alastair (2015). The Geography of Sea Transport. pp. 33–37. ISBN 978-1-317-35150-4.
- ^ Balard, Michel (2003). Bull, Marcus Graham; Edbury, Peter; Phillips, Jonathan (eds.). The Experience of Crusading, Volume 2 – Defining the Crusader Kingdom. Cambridge University Press. pp. 23–35. ISBN 978-0-521-78151-0.
- ^ Housley, Norman (2006). Contesting the Crusades. Blackwell Publishing. pp. 152–54. ISBN 978-1-4051-1189-8.
- ^ Brundage, James (2004). Medieval Italy: An Encyclopedia. Routledge. p. 273. ISBN 978-1-135-94880-1.
- ^ Robert Davis (5 December 2003). Christian Slaves, Muslim Masters: White Slavery in the Mediterranean, the Barbary Coast and Italy, 1500–1800. Palgrave Macmillan. ISBN 978-0-333-71966-4. Retrieved 17 January 2013.
- ^ "British Slaves on the Barbary Coast". Bbc.co.uk. Retrieved 17 January 2013.
- ^ C.I. Gable – Constantinople Falls to the Ottoman Turks - Boglewood Timeline – 1998 – Retrieved 3 September 2011.
- ^ "History of the Ottoman Empire, an Islamic Nation where Jews Lived" – Sephardic Studies and Culture – Retrieved 3 September 2011.
- ^ Robert Guisepi – The Ottomans: From Frontier Warriors To Empire Builders Archived 11 March 2015 at the Wayback Machine – 1992 – History World International – Retrieved 3 September 2011.
- ^ See: Brian Lavery "Nelson's Navy: The Ships, Men, and Organization, 1793–1815" (2013).
- ^ Mary Pelletier "A brief history of the Suez Canal" In: Apollo 3 July 2018; Harry de Wilt: Is One Belt, One Road a China crisis for North Sea main ports? in World Cargo News, 17. December 2019; Marcus Hernig: Die Renaissance der Seidenstraße (2018), pp 112; Hans Reis "Der Suezkanal – die wichtigste von Menschen geschaffene Wasserstrasse wurde vor 150 Jahren gebaut und war oft umkämpft" In: Neue Zürcher Zeitung 17 November 2019; Bernhard Simon: Can The New Silk Road Compete With The Maritime Silk Road? in The Maritime Executive, 1 January 2020.
- ^ "Migrant deaths prompt calls for EU action". Al Jazeera – English. 13 October 2013. Retrieved 12 December 2014.
- ^ "Schulz: EU migrant policy 'turned Mediterranean into graveyard'". EUobserver. 24 October 2013. Retrieved 12 December 2014.
- ^ "Novruz Mammadov: The Mediterranean become a burial ground".
- ^ "Over one million sea arrivals reach Europe in 2015". UNHCR – The UN Refugee Agency. 30 December 2015.
- ^ "What will Italy's new government mean for migrants?". The Local. 21 May 2018.
- ^ "African migrants fear for future as Italy struggles with surge in arrivals". Reuters. 18 July 2017.
- ^ Harald Krachler "Alois Negrelli, der Suezkanalplaner" In: Wiener Zeitung 18 January 1999.
- ^ "The Mediterranean Marine and Coastal Environment | UNEPMAP QSR". www.medqsr.org. Retrieved 15 September 2020.
- ^ a b "Sea Around Us | Fisheries, Ecosystems and Biodiversity". www.seaaroundus.org. Retrieved 15 September 2020.
- ^ June 2010, Remy Melina 04. "The World's Biggest Oceans and Seas". livescience.com. Retrieved 15 September 2020.
- ^ a b c "Limits of Oceans and Seas, 3rd edition" (PDF). International Hydrographic Organization. 1953. Archived from the original (PDF) on 8 October 2011. Retrieved 28 December 2020.
- ^ "Groundbreaking ceremony for bridge over Dardanelles to take place on March 18". Hürriyet Daily News. 17 March 2017. Retrieved 19 March 2017.
- ^ Jonah 1:3 - "But Jonah rose up to flee unto Tarshish from the presence of the LORD, and went down to Joppa; and he found a ship going to Tarshish: so he paid the fare thereof, and went down into it, to go with them unto Tarshish [...]."
- ^ http://www.seaaroundus.org/data/#/eez/793?chart=catch-chart&dimension=taxon&measure=tonnage&limit=10
- ^ "Mediterranean Sea | Facts, History, Islands, & Countries". Encyclopedia Britannica. Retrieved 15 September 2020.
- ^ https://wwf.panda.org/knowledge_hub/where_we_work/mediterranean/
- ^ "The Mediterranean coast". www.fao.org. Retrieved 15 September 2020.
- ^ Weather2Travel.com. "Malaga Climate: Monthly Weather Averages – Costa del Sol".
- ^ Weather2Travel.com. "Barcelona Climate: Monthly Weather Averages – Spain".
- ^ Weather2Travel.com. "Marseille Climate: Monthly Weather Averages – France".
- ^ Weather2Travel.com. "Naples Climate: Monthly Weather Averages – Neapolitan Riviera".
- ^ Weather2Travel.com. "Valletta Climate: Monthly Weather Averages – Malta – Malta".
- ^ Weather2Travel.com. "Venice Climate: Monthly Weather Averages – Venetian Riviera".
- ^ Weather2Travel.com. "Athens Climate: Monthly Weather Averages – Greece – Greece".
- ^ Weather2Travel.com. "Iraklion Climate: Monthly Weather Averages – Crete – Crete".
- ^ Weather2Travel.com. "Antalya: Monthly Weather Averages - Antalya Coast - Turkey".
- ^ Weather2Travel.com. "Limassol Climate: Monthly Weather Averages – Cyprus".
- ^ Seatemperature.org. "Mercin (alternate names - Mersin, Mersina, Mersine): Monthly Weather Averages - Turkey".
- ^ Weather2Travel.com. "Tel Aviv Climate: Monthly Weather Averages – Israel".
- ^ Seatemperature.org. "Alexandria Climate: Monthly Weather Averages – Egypt".
- ^ Pinet, Paul R. (1996), Invitation to Oceanography (3rd ed.), St Paul, Minnesota: West Publishing Co., p. 202, ISBN 978-0-314-06339-7
- ^ Pinet 1996, p. 206.
- ^ a b Emeis, Kay-Christian; Struck, Ulrich; Schulz, Hans-Martin; Rosenberg, Reinhild; Bernasconi, Stefano; Erlenkeuser, Helmut; Sakamoto, Tatsuhiko; Martinez-Ruiz, Francisca (2000). "Temperature and salinity variations of Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios". Palaeogeography, Palaeoclimatology, Palaeoecology. 158 (3–4): 259–280. Bibcode:2000PPP...158..259E. CiteSeerX 10.1.1.378.4964. doi:10.1016/s0031-0182(00)00053-5.
- ^ Ludwig Ellenberg: Die Meerenge von Gibraltar – Küstenmorphologie zwischen Mittelmeer und Atlantik. In: Geographica Helvetica. Vol. 36, No. 3, 1981, pp. 109–120, doi:10.5194/gh-36-109-1981
- ^ Robert Hofrichter (ed.): Das Mittelmeer: Geschichte und Zukunft eines ökologisch sensiblen Raums, p. 530
- ^ Millot, Claude; Taupier-Letage, Isabelle (2005). "Circulation in the Mediterranean Sea" (PDF). The Mediterranean Sea. Handbook of Environmental Chemistry. 5K. pp. 29–66. doi:10.1007/b107143. ISBN 978-3-540-25018-0.
- ^ Millot, C. (1989). "La Circulation Générale En Méditerranée Occidentale : Aperçu De Nos Connaissances Et Projets D'études" [General Circulation in the Western Mediterranean: Overview of Our Knowledge and Study Projects]. Annales de Géographie (in French). 98 (549): 497–515. doi:10.3406/geo.1989.20925. JSTOR 23452851.
- ^ Gasparini, G.P.; Ortona, A.; Budillon, G.; Astraldi, M.; Sansone, E. (June 2005). "The effect of the Eastern Mediterranean Transient on the hydrographic characteristics in the Strait of Sicily and in the Tyrrhenian Sea". Deep Sea Research Part I: Oceanographic Research Papers. 52 (6): 915–935. Bibcode:2005DSRI...52..915G. doi:10.1016/j.dsr.2005.01.001.
- ^ Lascaratos, Alex; Roether, Wolfgang; Nittis, Kostas; Klein, Birgit (August 1999). "Recent changes in deep water formation and spreading in the eastern Mediterranean Sea: a review". Progress in Oceanography. 44 (1–3): 5–36. Bibcode:1999PrOce..44....5L. doi:10.1016/S0079-6611(99)00019-1.
- ^ Theocharis, Alexander; Nittis, Kostas; Kontoyiannis, Harilaos; Papageorgiou, Emanuel; Balopoulos, Efstathios (1 June 1999). "Climatic changes in the Aegean Sea influence the eastern Mediterranean thermohaline circulation (1986–1997)". Geophysical Research Letters. 26 (11): 1617–1620. Bibcode:1999GeoRL..26.1617T. doi:10.1029/1999GL900320.
- ^ Civitarese, G., Gacic, M., Lipizer, M., and Borzelli, G. L. E. (2010). On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences, 7(12) : 3987–3997. WOS :000285574100006.
- ^ a b Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33(8) :L08707. 15
- ^ Béthoux, J. P., Gentili, B., Raunet, J., and Tailliez, D. (1990). Warming trend in the western Mediterranean deep water. Nature, 347(6294) : 660–662.
- ^ Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R., Déqué, M., Herrmann, M., Marcos, M., Dubois, C., Padorno, E., Alvarez-Fanjul, E., and Gomis, D. (2015). Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Climate Dynamics, 45(9–10) : 2775–2802
- ^ Uitz, J., Stramski, D., Gentili, B., D’Ortenzio, F., and Claustre, H. (2012). Estimates of phytoplankton class-specific and total primary production in the Mediterranean Sea from satellite ocean color observations: primary production in the Mediterranean. Global Biogeochemical Cycles, 26(2)
- ^ a b Bosc, E., Bricaud, A., and Antoine, D. (2004). Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations : MEDITERRANEAN SEA BIOMASS AND PRODUCTION. Global Biogeochemical Cycles, 18(1).
- ^ Lebeaupin Brossier, C., Béranger, K., Deltel, C., and Drobinski, P. (2011). The Mediterranean response to different space–time resolution atmospheric forcings using perpetual mode sensitivity simulations. Ocean Modelling, 36(1–2) : 1–25
- ^ d’Ortenzio, F. and Ribera d’Alcalà, M. (2009). On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences, 6(2) : 139–148
- ^ Moutin, T., Van Wambeke, F., and Prieur, L. (2012). Introduction to the Biogeochemistry from the Oligo- trophic to the Ultraoligotrophic Mediterranean (BOUM) experiment. Biogeosciences, 9(10) : 3817–3825.
- ^ Berland, B., Bonin, D., and Maestrini, S. (1980). Azote ou phosphore ? Considérations sur le paradoxe nutritionnel de la mer méditerranée. Oceanologica Acta, 3(1) : 135–141
- ^ Béthoux, J. P., Morin, P., Madec, C., and Gentili, B. (1992). Phosphorus and nitrogen behaviour in the Mediterranean Sea. Deep Sea Research Part A. Oceanographic Research Papers, 39(9) : 1641–1654.
- ^ Kress, N. and Herut, B. (2001). Spatial and seasonal evolution of dissolved oxygen and nutrients in the Southern Levantine Basin (Eastern Mediterranean Sea) : chemical characterization of the water masses and inferences on the N : P ratios. Deep Sea Research Part I : Oceanographic Research Papers, 48(11) : 2347–2372
- ^ Krom, M. D., Thingstad, T. F., Brenner, S., Carbo, P., Drakopoulos, P., Fileman, T. W., Flaten, G. A. F., Groom, S., Herut, B., Kitidis, V., Kress, N., Law, C. S., Liddicoat, M. I., Mantoura, R. F. C., Pasternak, A., Pitta, P., Polychronaki, T., Psarra, S., Rassoulzadegan, F., Skjoldal, E. F., Spyres, G., Tanaka, T., Tselepides, A., Wassmann, P., Wexels Riser, C., Woodward, E. M. S., Zodiatis, G., and Zohary, T. (2005). Summary and overview of the CYCLOPS P addition Lagrangian experiment in the Eastern Mediterranean. Deep Sea Research Part II : Topical Studies in Oceanography, 52(22–23) : 3090–3108.
- ^ Sammartino, M., Di Cicco, A., Marullo, S., and Santoleri, R. (2015). Spatio-temporal variability of micro-, nano- and pico-phytoplankton in the Mediterranean Sea from satellite ocean colour data of SeaWiFS. Ocean Sciences, 11(5) : 759–778
- ^ Uitz, J., Stramski, D., Gentili, B., D’Ortenzio, F., and Claustre, H. (2012). Estimates of phytoplankton class-specific and total primary production in the Mediterranean Sea from satellite ocean color obser- vations : primary production in the mediterranean. Global Biogeochemical Cycles, 26(2)
- ^ Ryan, William B. F. (2009). "Decoding the Mediterranean salinity crisis". Sedimentology. 56 (1): 95–136. Bibcode:2009Sedim..56...95R. doi:10.1111/j.1365-3091.2008.01031.x.
- ^ William Ryan (2008). "Modeling the magnitude and timing of evaporative drawdown during the Messinian salinity crisis" (PDF). Stratigraphy. 5 (3–4): 229. Archived from the original (PDF) on 4 March 2016. Retrieved 5 November 2014.
- ^ Garcia-Castellanos, D.; Estrada, F.; Jiménez-Munt, I.; Gorini, C.; Fernàndez, M.; Vergés, J.; De Vicente, R. (2009). "Catastrophic flood of the Mediterranean after the Messinian salinity crisis". Nature. 462 (7274): 778–781. Bibcode:2009Natur.462..778G. doi:10.1038/nature08555. PMID 20010684. S2CID 205218854.
- ^ Elmer LaMoreaux, Philip (2001). "Geologic/Hydrogeologic Setting and Classification of Springs". Springs and Bottled Waters of the World: Ancient History, Source, Occurrence, Quality and Use. Springer. p. 57. ISBN 978-3-540-61841-6.
- ^ Žumer, Jože (2004). "Odkritje podmorskih termalnih izvirov" [Discovery of submarine thermal springs] (PDF). Geografski Obzornik (in Slovenian). 51 (2): 11–17. ISSN 0016-7274. (in Slovene)
- ^ de la Vara, Alba; Topper, Robin P.M.; Meijer, Paul Th.; Kouwenhoven, Tanja J. (2015). "Water exchange through the Betic and Rifian corridors prior to the Messinian Salinity Crisis: A model study". Paleoceanography. 30 (5): 548–557. Bibcode:2015PalOc..30..548V. doi:10.1002/2014PA002719. hdl:1874/326590.
- ^ Krijgsman, W.; Fortuinb, A.R.; Hilgenc, F.J.; Sierrod, F.J. (2001). "Astrochronology for the Messinian Sorbas basin (SE Spain) and orbital (precessional) forcing for evaporite cyclicity" (PDF). Sedimentary Geology. 140 (1): 43–60. Bibcode:2001SedG..140...43K. doi:10.1016/S0037-0738(00)00171-8. hdl:1874/1632.
- ^ Gargani J., Rigollet C. (2007). "Mediterranean Sea level variations during the Messinian Salinity Crisis". Geophysical Research Letters. 34 (L10405): L10405. Bibcode:2007GeoRL..3410405G. doi:10.1029/2007GL029885. S2CID 128771539.
- ^ Gargani J.; Moretti I.; Letouzey J. (2008). "Evaporite accumulation during the Messinian Salinity Crisis : The Suez Rift Case" (PDF). Geophysical Research Letters. 35 (2): L02401. Bibcode:2008GeoRL..35.2401G. doi:10.1029/2007gl032494.
- ^ Govers, Rob (February 2009). "Choking the Mediterranean to dehydration: The Messinian salinity crisis". Geology. 37 (2): 167–170. Bibcode:2009Geo....37..167G. doi:10.1130/G25141A.1. S2CID 34247931.
- ^ Garcia-Castellanos, D.; Villaseñor, A. (15 December 2011). "Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc". Nature. 480 (7377): 359–363. Bibcode:2011Natur.480..359G. doi:10.1038/nature10651. PMID 22170684. S2CID 205227033.
- ^ Agusti, J; Moya-Sola, S (1990). Mammal extinctions in the Vallesian (Upper Miocene). Lecture Notes in Earth Sciences. 30. pp. 425–432. doi:10.1007/BFb0011163. ISBN 978-3-540-52605-6. ISSN 1613-2580. (Abstract)
- ^ Politische Geographien Europas: Annäherungen an ein umstrittenes Konstrukt, Anke Strüver, LIT Verlag Münster, 2005, p. 43
- ^ FJ, Hilgen. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale, 104 (1991) 226–244 Earth and Planetary Science Letters, 1991. "Archived copy" (PDF). Archived from the original (PDF) on 24 July 2011. Retrieved 4 December 2009.CS1 maint: archived copy as title (link)
- ^ Coll, Marta, et al., "The biodiversity of the Mediterranean Sea: estimates, patterns, and threats." PLOS ONE 5.8, 2010.
- ^ Hsu K.J., "When the Mediterranean Dried Up" Scientific American, Vol. 227, December 1972, p. 32
- ^ Carrington, Damian. "UK's last resident killer whales 'doomed to extinction'", The Guardian, London, 14 January 2016. Retrieved 17 February 2019.
- ^ a b c d e f g h The Nature of Mediterranean Europe: An Ecological History, by Alfred Thomas Grove, Oliver Rackham, Yale University Press, 2003, review at Yale university press Nature of Mediterranean Europe: An Ecological History (review) Brian M. Fagan, Journal of Interdisciplinary History, Volume 32, Number 3, Winter 2002, pp. 454–455 |
- ^ Little Ice Ages: Ancient and Modern, Jean M. Grove, Taylor & Francis, 2004
- ^ Christian Pfister (editor), Das 1950er Syndrom: Der Weg in die Konsumgesellschaft, Berne 1995
- ^ The wave that destroyed Atlantis Harvey Lilley, BBC News Online, 20 April 2007. Retrieved 21 April 2007.
- ^ Antonio Denti, "Super volcano", global danger, lurks near Pompeii, Reuters, 3 August 2012.
- ^ Isaia, Roberto; Paola Marianelli; Alessandro Sbrana (2009). "Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: Implications for caldera dynamics and future eruptive scenarios". Geophysical Research Letters. 36 (L21303): L21303. Bibcode:2009GeoRL..3621303I. doi:10.1029/2009GL040513.
- ^ McGuire, Bill (16 October 2003). "In the shadow of the volcano". guardian.co.uk. Guardian News and Media Limited. Retrieved 8 May 2010.
- ^ a b "Alle kennisdossiers van het Instituut Fysieke Veiligheid" (PDF).
- ^ "Press corner". European Commission - European Commission. Retrieved 15 September 2020.
- ^ "IUCN Guidelines for the Prevention of Biodiversity Loss Caused by Alien Invasive Species" (PDF). International Union for Conservation of Nature. 2000. Archived from the original (PDF) on 15 January 2009. Retrieved 11 August 2009.
- ^ Galil, B.S. and Zenetos, A. (2002). A sea change: exotics in the eastern Mediterranean Sea, in: Leppäkoski, E. et al. (2002). Invasive aquatic species of Europe: distribution, impacts and management. pp. 325–336.
- ^ "Mediterranean Sea Level Could Rise By Over Two Feet, Global Models Predict". Science Daily. 3 March 2009.
- ^ "Briny future for vulnerable Malta". BBC News. 4 April 2007.
- ^ "Egypt fertile Nile Delta falls prey to climate change". 28 January 2010. Archived from the original on 9 February 2011.
- ^ "Cyprus wetlands in danger of being destroyed by climate change". cyprus-mail.com. 8 November 2019.
- ^ Nicholls, R.J.; Klein, R.J.T. (2005). Climate change and coastal management on Europe's coast, in: Vermaat, J.E. et al. (Ed.) (2005). Managing European coasts: past, present and future. pp. 199–226.
- ^ a b c "Other threats in the Mediterranean | Greenpeace International". Greenpeace. Archived from the original on 16 April 2010. Retrieved 23 April 2010.
- ^ "Pollution in the Mediterranean Sea. Environmental issues". Explorecrete.com. Retrieved 23 April 2010.
- ^ "EUROPA". Europa. Archived from the original on 9 April 2009. Retrieved 23 April 2010.
- ^ "Mediterranean Monk Seal Fact Files: Overview". Monachus-guardian.org. 5 May 1978. Retrieved 23 April 2010.
- ^ "Marine Litter: An Analytical Overview" (PDF). United Nations Environment Programme. 2005. Retrieved 1 August 2008.
- ^ Thomas Fromm "Pipeline durch die Alpen: Alles im Fluss" In: Süddeutsche Zeitung, 26 December 2019.
- ^ Arvis, Jean-François; Vesin, Vincent; Carruthers, Robin; Ducruet, César; de Langen, Peter (2019). Maritime Networks, Port Efficiency, and Hinterland Connectivity in the Mediterranean. International Development in Focus (PDF). Washington, DC: World Bank. p. 41. doi:10.1596/978-1-4648-1274-3. hdl:10398/08c83467-00f6-4f56-9833-1beda9f7734f. ISBN 978-1-4648-1274-3.
- ^ UNWTO Tourism Highlights: 2019 Edition | World Tourism Organization. 2019. doi:10.18111/9789284421152. ISBN 978-92-844-2115-2.
- ^ Rüdiger Hachtmann "Tourismus-Geschichte." (2007); Attilio Brilli "Quando viaggiare era un'arte. Il romanzo del grand tour." (1995).
외부 링크
- Mediterranean Sea Microorganisms: 180+ images of Foraminifera
- Eastern Mediterranean Sea Long Term Ecological Research Station